Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Global atmospheric concentrations of nitrous oxide have been increasing over previous decades with emerging research suggesting the Arctic as a notable contributor. Thermokarst processes, increasing temperature, and changes in drainage can cause degradation of polygonal tundra landscape features resulting in elevated, well-drained, unvegetated soil surfaces that exhibit large nitrous oxide emissions. Here, we outline the magnitude and some of the dominant factors controlling variability in emissions for these thermokarst landscape features in the North Slope of Alaska. We measured strong nitrous oxide emissions during the growing season from unvegetated high centered polygons (median (mean) = 104.7 (187.7) µg N2O-N m−2 h−1), substantially higher than mean rates associated with Arctic tundra wetlands and of similar magnitude to unvegetated hotspots in peat plateaus and palsa mires. In the absence of vegetation, isotopic enrichment of15N in these thermokarst features indicates a greater influence of microbial processes, (denitrification and nitrification) from barren soil. Findings reveal that the thermokarst features discussed here (~1.5% of the study area) are likely a notable source of nitrous oxide emissions, as inferred from chamber-based estimates. Growing season emissions, estimated at 16 (28) mg N2O-N ha−1 h−1, may be large enough to affect landscape-level greenhouse gas budgets.more » « less
-
The positive Arctic–methane (CH4) feedback forms when more CH4is released from the Arctic tundra to warm the climate, further stimulating the Arctic to emit CH4. This study utilized the CLM-Microbe model to project CH4emissions across five distinct Arctic tundra ecosystems on the Alaska North Slope, considering three Shared Socioeconomic Pathway (SSP) scenarios using climate data from three climate models from 2016 to 2100. Employing a hyper-resolution of 5 m × 5 m within 40,000 m2domains accounted for the Arctic tundra’s high spatial heterogeneity; three sites were near Utqiaġvik (US-Beo, US-Bes, and US-Brw), with one each in Atqasuk (US-Atq) and Ivotuk (US-Ivo). Simulated CH4emissions substantially increased by a factor of 5.3 to 7.5 under the SSP5–8.5 scenario compared to the SSP1–2.6 and SSP2–4.5 scenarios. The projected CH4emissions exhibited a stronger response to rising temperature under the SSP5–8.5 scenario than under the SSP1–2.6 and SSP2–4.5 scenarios, primarily due to strong temperature dependence and the enhanced precipitation-induced expansion of anoxic conditions that promoted methanogenesis. The CH4transport via ebullition and plant-mediated transport is projected to increase under all three SSP scenarios, and ebullition dominated CH4transport by 2100 across five sites. Projected CH4emissions varied in temperature sensitivity, with a Q10range of 2.7 to 60.9 under SSP1–2.6, 3.8 to 17.6 under SSP2–4.5, and 5.7 to 17.2 under SSP5–8.5. Compared with the other three sites, US-Atq and US-Ivo were estimated to have greater increases in CH4emissions due to warmer temperatures and higher precipitation. The fact that warmer sites and warmer climate scenarios had higher CH4emissions suggests an intensified positive Arctic–CH4feedback in the 21st century. Microbial physiology and substrate availability dominated the enhanced CH4production. The simulated intensified positive feedback underscores the urgent need for a more mechanistic understanding of CH4dynamics and the development of strategies to mitigate CH4across the Arctic.more » « less
-
Abstract The changing thermal state of permafrost is an important indicator of climate change in northern high latitude ecosystems. The seasonally thawed soil active layer thickness (ALT) overlying permafrost may be deepening as a consequence of enhanced polar warming and widespread permafrost thaw in northern permafrost regions (NPRs). The associated increase in ALT may have cascading effects on ecological and hydrological processes that impact climate feedback. However, past NPR studies have only provided a limited understanding of the spatially continuous patterns and trends of ALT due to a lack of long-term high spatial resolution ALT data across the NPR. Using a suite of observational biophysical variables and machine learning (ML) techniques trained with availablein situALT network measurements (n= 2966 site-years), we produced annual estimates of ALT at 1 km resolution over the NPR from 2003 to 2020. Our ML-derived ALT dataset showed high accuracy (R2= 0.97) and low bias when compared within situALT observations. We found the ALT distribution to be most strongly affected by local soil properties, followed by topographic elevation and land surface temperatures. Pair-wise site-level evaluation between our data-driven ALT with Circumpolar Active Layer Monitoring data indicated that about 80% of sites had a deepening ALT trend from 2003 to 2020. Based on our long-term gridded ALT data, about 65% of the NPR showed a deepening ALT trend, while the entire NPR showed a mean deepening trend of 0.11 ± 0.35 cm yr−1[25%–75% quantile: (−0.035, 0.204) cm yr−1]. The estimated ALT trends were also sensitive to fire disturbance. Our new gridded ALT product provides an observationally constrained, updated understanding of the progression of thawing and the thermal state of permafrost in the NPR, as well as the underlying environmental drivers of these trends.more » « less
-
Abstract The Arctic–Boreal Zone is rapidly warming, impacting its large soil carbon stocks. Here we use a new compilation of terrestrial ecosystem CO2fluxes, geospatial datasets and random forest models to show that although the Arctic–Boreal Zone was overall an increasing terrestrial CO2sink from 2001 to 2020 (mean ± standard deviation in net ecosystem exchange, −548 ± 140 Tg C yr−1; trend, −14 Tg C yr−1;P < 0.001), more than 30% of the region was a net CO2source. Tundra regions may have already started to function on average as CO2sources, demonstrating a shift in carbon dynamics. When fire emissions are factored in, the increasing Arctic–Boreal Zone sink is no longer statistically significant (budget, −319 ± 140 Tg C yr−1; trend, −9 Tg C yr−1), and the permafrost region becomes CO2neutral (budget, −24 ± 123 Tg C yr−1; trend, −3 Tg C yr−1), underscoring the importance of fire in this region.more » « lessFree, publicly-accessible full text available February 1, 2026
-
na (Ed.)Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to climate change, management practices, and natural disturbances; however, their effectiveness depends on their representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clustering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hydrological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these groups.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract. The warming of the Arctic is affecting the carbon cycle of tundraecosystems. Most research on carbon fluxes from Arctic tundra ecosystems hasfocused on abiotic environmental controls (e.g., temperature, rainfall, orradiation). However, Arctic tundra vegetation, and therefore the carbonbalance of these ecosystems, can be substantially impacted by herbivory. Inthis study we tested how vegetation consumption by brown lemmings (Lemmus trimucronatus) canimpact carbon exchange of a wet-sedge tundra ecosystem near Utqiaġvik,Alaska during the summer and the recovery of vegetation during the followingsummer. We placed brown lemmings in individual enclosure plots and testedthe impact of lemmings' herbivory on carbon dioxide (CO2) fluxes, methane(CH4) fluxes, and the normalized difference vegetation index (NDVI)immediately after lemming removal and during the following growing season.During the first summer of the experiment, lemmings' herbivory reduced plantbiomass (as shown by the decrease in the NDVI) and decreased net CO2uptake while not significantly impacting CH4 emissions. CH4emissions were likely not significantly affected due to CH4 beingproduced deeper in the soil and escaping from the stem bases of the vascularplants. The summer following the lemming treatments, NDVI and net CO2fluxes returned to magnitudes similar to those observed before the start ofthe experiment, suggesting a complete recovery of the vegetation and atransitory nature of the impact of lemming herbivory. Overall, lemmingherbivory has short-term but substantial effects on carbon sequestration byvegetation and might contribute to the considerable interannual variabilityin CO2 fluxes from tundra ecosystems.more » « less
-
Climate change is affecting the Arctic at an unprecedented rate, potentially releasing substantial amounts of greenhouse gases (CO2 (carbon dioxide) and CH4 (Methane)) from tundra ecosystems. Measuring greenhouse gas emissions in the Arctic, particularly outside of the summer period, is very challenging due to extreme weather conditions. This research project provided the first annual balance of both CH4 and CO2 fluxes in a total of five sites spanning a 300Km transect across the North Slope of Alaska (three sites in Barrow, one site in Aquasuk, and one site in Ivotuk). The results from the continuous year-round CH4 fluxes across these sites showed how cumulative emissions for the cold season accounted on average for 50% of the annual budget (Zona et al., 2016), a notably higher contribution than previously modelled, and also higher than observed in boreal Alaska. The analysis of the cold period CH4 fluxes suggested that the presence of an unfrozen soil layer in the fall and early winter was a major control on cold season CH4 emissions (Zona et al., 2016). We also cross-compared all instruments measuring ecosystem scale CO2 and CH4 fluxes operating at our sites, which allowed us to make recommendation of the best performing instruments under these extreme weather conditions. The best performing instruments were closed path analyzers and intermittently heated sonic anemometers which had the highest final data cover. A continuously heated anemometer increased data coverage relative to non-heated anemometers, but resulted in an overestimation of the fluxes (Goodrich et al., 2016). We developed an intermittent heating strategy that was only activated when the data quality was low, and appeared to be the preferable method to prevent icing while avoiding biases to the measurements. Closed and open-path analyzers showed good agreement, but data coverage was much greater when using closed-path analyzers, especially during winter (Goodrich et al., 2016). Given the importance of vegetation on greenhouse gas emissions, we also investigated the role of different vegetation types under a broad range of environmental conditions on the CH4 emissions. We found that vegetation type can be a very useful tool to describe the spatial variability in CH4 emissions over the landscape (McEwing et al., 2015), and that just two vegetation types were able to explain about 50% of the variability in CH4 fluxes across ecosystems even hundreds of kilometers apart (Davidson et al., 2016a). To upscale these plot scale fluxes we completed high resolution vegetation maps in each of our tower sites (Davidson et al., 2016b), which are the finest resolution maps currently available from these sites, and also contributed to larger scale mapping effort (Walker et al., 2016). The soil microbial analysis from soil cores collected across our sites showed an association between overall microbial diversity and latitude, with a higher diversity found in the northerly site and lower diversity in the southerly site, contrary to current knowledge (Wagner et al., accepted). We also measured CH4 and CO2 concentrations in the soil, which showed to be orders of magnitude higher than in the atmosphere (Arndt et al., 2016). Our results contributed to model development (Xu et al., 2016; Kobayashi et al., 2016; Liljedahl et al., 2016; Luus et al., 2017), and to a wide variety of other projects as shown by the hundreds of download of our data from Ameriflux. Overall, this grant resulted in the publication of 25 peer reviewed journal articles, including in high impact factor journals such as PNAS (Proceedings of the National Academy of Sciences of the United States of America), and Nature Climate Change, in addition to five more in review and in preparation, and supported the research of seven PhD students, two master students, and ten undergraduate students.more » « less
An official website of the United States government
